Preparation of Pt/C electrocatalysts using an incipient precipitation method

نویسندگان

  • Han-Ik Joh
  • Sang Joon Seo
  • Hyun Tae Kim
  • Sang Heup Moon
چکیده

−Highly loaded and dispersed Pt/C catalysts, used as cathodic electrocatalysts in low temperature fuel cells, were prepared using a new method involving the slow addition of a Pt precursor to a solution containing dispersed carbon powder and a reducing agent. During this process, the added Pt precursor was reduced instantaneously into fine particles and adsorbed onto the carbon surface in the solution. A Pt loading of 55 wt% was obtained, which was close to the nominal amount of Pt, 60 wt%, added in the preparation step. The average particle size of Pt was about 4.2 nm, according to X-ray diffraction. The surface area of the Pt measured by cyclic voltammetry was about 61.4 m/(g of Pt). The activity of the prepared Pt/C, as an electrode of polymer electrolyte membrane fuel cell, was increased by 34.8% and 15.0%, according to the halfand single-cell tests, respectively, compared to the activity of one prepared using a conventional precipitation method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal Oxide/Pt Based Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction

Fuel cell is a promising choice for clean energy because of its eco-friendly system, high energy conversion efficiency and high power density. Recently, much of the research work is focused on the system of combining metal oxides to increase the durability and surface area and to reduce the cost. In this study, among the various fabrication methods, we used the precipitation method to synthesis...

متن کامل

Preparation and Characterization of Electrocatalyst Nanoparticles for Direct Methanol Fuel Cell Applications Using β-D-glucose as Protection Agent

In this study, the activity, stability and performance of carbon supported platinum (Pt/C) electrocatalyst in cathode and carbon supported Pt and ruthenium (PtRu/C) electrocatalyst in anode of direct methanol fuel cell (DMFC) were studied. The Pt/C and PtRu/C electrocatalysts were prepared by impregnation reduction method. The β-D-glucose was used as protection agent to reduce the particle size...

متن کامل

Platinum particles supported on mesoporous carbons: fabrication and electrocatalytic performance in methanol-tolerant oxygen-reduction reactions

In this report, we describe the preparation and electrochemical characterization of a Pt electrocatalyst, which was synthesized from hexachloroplatinic acid, using the incipient wetness impregnation method. This carbon mesoporous materials (Pt-CMMs) electrocatalyst was used for catalyzing the oxidation of methanol and its oxygen-reduction reaction. The electrocatalytic oxidation of methanol was...

متن کامل

A NEW GAS DIFFUSION ELECTRODE (GDE) WITH A BETTER O2 REDUCTION ELECTROCATALYSTS WITH VERY LOW PT CONTENTS VIA NANO-SIZED PT-COATED NAFION

In the present study, a new gas diffusion electrode (GDE) (based on Pt/Nafion membrane) is fabricated. The electrochemical results show that the new GDE has the highest electrochemical activity toward the oxygen reduction reaction (ORR) among the three electrodes. The SEM and XRD findings show that a platinum layer can be attached to Nafion membrane closely and firmly with a strong peak corresp...

متن کامل

Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation

The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010